Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 1589-1601, 2022.
Article in Chinese | WPRIM | ID: wpr-927803

ABSTRACT

Gas vesicles are a unique class of gas-filled protein nanostructures which are commonly found in cyanobacteria and Halobacterium. The gas vesicles may scatter sound waves and generate harmonic signals, which enabled them to have the potential to become a novel ultrasound contrast agent. However, the current hypertonic cracking method for isolating gas vesicles contains tedious operational procedures and is of low yield, thus not suitable for large-scale application. To overcome these technical challenges, we developed a rapid and efficient method for isolating gas vesicles from Microcystis. The new H2O2-based method increased the yield by three times and shortened the operation time from 24 hours to 7 hours. The H2O2 method is not only suitable for isolation of gas vesicles from laboratory-cultured Microcystis, but also suitable for colonial Microcystis covered with gelatinous sheath. The gas vesicles isolated by H2O2 method showed good performance in ultrasound contrast imaging. In conclusion, this new method shows great potential for large-scale application due to its high efficiency and wide adaptability, and provides technical support for developing gas vesicles into a biosynthetic ultrasonic contrast agent.


Subject(s)
Contrast Media , Cyanobacteria , Hydrogen Peroxide , Microcystis , Proteins/chemistry
2.
Chinese Journal of Biotechnology ; (12): 1335-1347, 2019.
Article in Chinese | WPRIM | ID: wpr-771795

ABSTRACT

Docosahexaenoic acid (DHA) has many unique physiological functions such as promoting the development of brain and retina in infants. Therefore, it is widely applied to food, pharmacy, breeding and other industries. To obtain engineered strains of Aurantiochytrium limacinum SR21 suitable for industrial application with increased lipid and DHA production, we designed a simple, fast, accurate and high-throughput screening method based on Nile red staining of oil droplets. First, ultraviolet C (UVC) mutagenesis was used to generate a random mutant library of A. limacinum. Second, screening conditions were optimized including staining conditions of Nile red and the sorting criterion. Thereby, three putative high-lipid mutants (D03432, D05106 and D01521) were selected from the mutant library containing 3 648 mutated clones. The three mutants grew faster and produced higher amounts of lipids and DHA compared to wild type (WT). In 100 mL cultures, the lipid content of D03432 and D05106 mutants reached 64.74% and 63.13% of dry cell weight respectively, whereas the wild strain exhibited only 43.19%. DHA yield in these two mutants were even 2.26-fold and 2.37-fold higher than that of the wild strain. Experiment with 5 L fermentor further confirmed that D03432 and D05106 mutants had better performance than the wild strain on DHA yield (45.51% and 66.46% more than that of the wild strain, respectively), and demonstrated their high potential for industrial application. This work not only generated several high-DHA content mutants with high potential for industrial use, but also provided vital guidance for high-throughput screening of lipid hyper-accumulating mutants in other oil-producing microorganisms.


Subject(s)
Bioreactors , Docosahexaenoic Acids , Mutagenesis , Staining and Labeling , Stramenopiles
SELECTION OF CITATIONS
SEARCH DETAIL